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Platensimycin (1) (Scheme 1) is a novel antibiotic lead compound
recently discovered by Merck scientists from a strain ofStrepto-
myces platensis.1a,b The potential medicinal applications1c,d and
challenging structure motif, especially the cage-like tetracyclic core
with several stereogenic centers, made this compound very attractive
as a target for chemical synthesis. To this end, total synthesis of
its racemic form was first reported by Nicolaou and co-workers,2a

and later they also reported corresponding asymmetric versions.2b

More recently, two other routes to the tetracyclic core structure
(()-92c,d and synthesis of a related structure2e have been reported.
Whereas these reported routes all utilized intramolecular etherifi-
cation reactions2a between the alcohol motifs and the alkene parts
as key steps, an alternative intramolecular Robinson annulation
approach seems to be more straightforward. Herein, we describe
our efforts in the enantioselective synthesis of the key cage-like
tetracyclic core structure of platensimycin.

The retrosynthetic analysis presented in Scheme 1 envisions a
Robinson annulation event3 of bicyclic compound8 to give the
tetracyclic core structure9.2a Specifically, we expect that, by using
proline-type catalysts, high diastereoselectivity will be obtained.4

Compound8 could be constructed from bicyclic lactone4 by adding
two appendages in an appropriate manner. Lactone4 has turned
out to be a known compound, which was encountered in the total
synthesis of a series of natural products in the hirsutene family.5

In contrast to the methods in the literature, we believe the potential
precursor of lactone4 could be ketone3, through a Baeyer-Villiger
oxidation/rearrangement sequence.6 Also, by utilizing our recently
developed Brønsted acid assisted chiral Lewis acid (BLA)7

catalyzed highly enantio- and regioselective Diels-Alder reaction,8

and subsequentN-nitrosoaldol addition/decarboxylation sequence,9

enantiomerically pure ketone3 could be easily prepared from
inexpensive, commercially available starting materials.

The implementation of the above-mentioned approach is outlined
in Scheme 2. BLA catalyst (2 mol %) prepared in situ from
oxazaborolidine10 10and carbon-based Brønsted acid11 11promoted
the Diels-Alder reaction between methyl acrylate and methyl
cyclopentadiene to give adduct2 in 92% yield with essentially
complete regio-, diastereo-, and enantiocontrol. The Diels-Alder
adduct2 was transformed to the desired ketone3 in a one-pot
procedure: nitrosoaldol reaction of lithium enolate of2 gave the
N-nitroso adduct exclusively, which upon treatment with lithium
hydroxide in dioxane/H2O underwent oxidative decarboxylation to
give 3 in 75% yield after hydrolysis during workup.12 Baeyer-
Villiger oxidation of ketone3 under basic hydrogen peroxide
conditions13 gave lactone4 in 68% yield, presumably through
hydrolysis of the initially formed Baeyer-Villiger product followed
by dehydrative lactonization.6

Addition of vinyl cuprate reagent14 to lactone4 led to the
corresponding carboxylic acid, which underwent an acid-catalyzed
lactonization with a catalytic amount of trifluoromethanesulfon-
imide15 to give vinyl lactone5 as an inconsequential diastereomeric

mixture (ca. 10:1 dr) in 81% yield over two steps.16 DIBAL-H
reduction of5 was followed by Lewis acid mediated cyanation in
one pot, giving desired cyanide6 and undesired cyanide6′ as a
separable diastereomeric mixture in 1:1 ratio with 85-95% yield.
This one-pot sequence eliminated the need to go through corre-
sponding acetate intermediates as is often seen in the literature.17

The undesired cyanide6′ can be converted back to a 2:3 mixture
of 6 and6′ by deprotonation with LiHMDS followed by aqueous
workup. Cyanide6 was reduced by DIBAL-H/n-BuLi to the
corresponding aldehyde,18 which was immediately subjected to
Wadsworth-Emmons conditions19 to give enone7 in 65% yield
over two steps. The protocol of ruthenium-catalyzed oxidative
cleavage of terminal olefins20 chemoselectively gave aldehyde8
in 59% yield (86% based on recovered7).

Gratifyingly, the key Robinson annulation event was ac-
complished in one pot by usingL-proline as the chiral control
element to mediate the initial intramolecular Michael addition,
followed by sodium hydroxide treatment to finish the aldol
dehydration. The tetracyclic core structure9 and its C-9 epimer
(platensimycin numbering)1b 9′ was obtained with 5:1 dr, favoring
the desired isomer. The observed preference for the enone’sSi face
being attacked (Figure 1) can be understood by the stereoelectronic
reasons previously proposed.21 With L-proline as the matched chiral
control element, such intrinsic preference is reinforced to give higher
diastereoselectivity than the mismatchedD-proline (3:1 dr, favoring
9).22,23 The 1H and 13C NMR spectra of9 are identical to those
previously reported.2a,c,dThus, our formal synthesis of platensimycin
is finished.

In conclusion, an enantioselective route to the tetracyclic core
structure of platensimycin is accomplished in 10 steps from simple
commercially available starting materials. A number of the steps
in this synthesis are noteworthy or novel: (1) the regio- and
enantioselective Diels-Alder reaction between methyl acrylate and
methyl cyclopentadiene with only 2 mol % catalyst loading; (2)
the one-pot conversion from ester2 to ketone3 using nitrosoben-

Scheme 1. Retrosynthetic Analysis

Figure 1. Facial selectivity for the intramolecular Michael addition.
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zene under mild conditions; (3) the one-pot reductive cyanation of
lactone4; (4) the stereoselective intramolecular Michael addition24

between theR-branched aldehyde moiety and theâ-substituted
enone part of bicyclic compound8.
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Scheme 2. Synthetic Route toward Tetracyclic Compound 9
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