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Platensimycinl) (Scheme 1) is a novel antibiotic lead compound Scheme 1. Retrosynthetic Analysis
recently discovered by Merck scientists from a strairStfepto- oH, o Rerzm ©  Diastereoselecive o
myces platensi¥P The potential medicinal applicatiolis and HOOC/Q[N —_ ) Robinson annutation /k
challenging structure motif, especially the cage-like tetracyclic core on M l 0 OM‘CHO
with several stereogenic centers, made this compound very attractive 1, piatensimycin - © 9 I
(m:p-‘CHO
o
8

as a target for chemical synthesis. To this end, total synthesis of coome

its racemic form was first reported by Nicolaou and co-workers, \@ o ee— e o< p — "

and later they also reported corresponding asymmetric ver&lons. Enantio- and regioselective ) o °

More recently, two other routes to the tetracyclic core structure il Ader reacton ¢

(£)-9%¢dand synthesis of a related strucfifrieave been reported. OHC OHC

Whereas these reported routes all utilized intramolecular etherifi- WO

cation reactior® between the alcohol motifs and the alkene parts . /  Me

as key steps, an alternative intramolecular Robinson annulation Mé O=% “H Vs

approach seems to be more straightforward. Herein, we describe H

our efforts in the enantioselective synthesis of the key cage-like leading to 9 leading to 9’

tetracyclic core structure of platensimycin. Figure 1. Facial selectivity for the intramolecular Michael addition.
The retrosynthetic analysis presented in Scheme 1 envisions amixture (ca 10:1 dr) in 81% yield over two step§.DIBAL-H

Robinson annulation evenof bicyclic compounds to give the reduction of5 was followed by Lewis acid mediated cyanation in

tetracyclic core structur@? Specifically, we expect that, by using  one pot, giving desired cyanid®and undesired cyanidé as a
proline-type catalysts, high diastereoselectivity will be obtathed. separable diastereomeric mixture in 1:1 ratio with-85% yield.
Compound could be constructed from bicyclic lactoddy adding This one-pot sequence eliminated the need to go through corre-
two appendages in an appropriate manner. Lactbhas turned sponding acetate intermediates as is often seen in the litetature.
out to be a known compound, which was encountered in the total The undesired cyanid& can be converted back to a 2:3 mixture
synthesis of a series of natural products in the hirsutene f&mily. of 6 and6' by deprotonation with LIHMDS followed by aqueous

In contrast to the methods in the literature, we believe the potential workup. Cyanide6 was reduced by DIBAL-HI-BuLi to the
precursor of lactond could be keton&, through a BaeyerVilliger corresponding aldehyd& which was immediately subjected to
oxidation/rearrangement sequeffiddso, by utilizing our recently Wadsworth-Emmons conditiond to give enone7 in 65% yield
developed Brgnsted acid assisted chiral Lewis acid (BLA) over two steps. The protocol of ruthenium-catalyzed oxidative

catalyzed highly enantio- and regioselective Diefdder reactiorf cleavage of terminal olefidé chemoselectively gave aldehy@e
and subsequet-nitrosoaldol addition/decarboxylation sequefice, in 59% yield (86% based on recover@j

enantiomerically pure keton8 could be easily prepared from Gratifyingly, the key Robinson annulation event was ac-
inexpensive, commercially available starting materials. complished in one pot by using-proline as the chiral control

The implementation of the above-mentioned approach is outlined element to mediate the initial intramolecular Michael addition,
in Scheme 2. BLA catalyst (2 mol %) prepared in situ from followed by sodium hydroxide treatment to finish the aldol
oxazaborolidin® 10and carbon-based Bragnsted A&l promoted dehydration. The tetracyclic core struct@eand its C-9 epimer
the Diels-Alder reaction between methyl acrylate and methyl (platensimycin numbering)9 was obtained with 5:1 dr, favoring
cyclopentadiene to give addu2tin 92% yield with essentially the desired isomer. The observed preference for the enSifeise
complete regio-, diastereo-, and enantiocontrol. The Biélder being attacked (Figure 1) can be understood by the stereoelectronic
adduct2 was transformed to the desired ketoBén a one-pot reasons previously propos&dwith L-proline as the matched chiral
procedure: nitrosoaldol reaction of lithium enolate2ofave the control element, such intrinsic preference is reinforced to give higher
N-nitroso adduct exclusively, which upon treatment with lithium diastereoselectivity than the mismatchegdroline (3:1 dr, favoring
hydroxide in dioxane/kD underwent oxidative decarboxylationto  9).2223 The 'H and 13C NMR spectra ofd are identical to those

give 3 in 75% vyield after hydrolysis during worku.Baeyer- previously reported¢9Thus, our formal synthesis of platensimycin

Villiger oxidation of ketone3 under basic hydrogen peroxide s finished.

conditiond® gave lactone4 in 68% yield, presumably through In conclusion, an enantioselective route to the tetracyclic core

hydrolysis of the initially formed BaeyeiVilliger product followed structure of platensimycin is accomplished in 10 steps from simple

by dehydrative lactonizatioh. commercially available starting materials. A number of the steps
Addition of vinyl cuprate reagett to lactone4 led to the in this synthesis are noteworthy or novel: (1) the regio- and

corresponding carboxylic acid, which underwent an acid-catalyzed enantioselective DielsAlder reaction between methyl acrylate and
lactonization with a catalytic amount of trifluoromethanesulfon- methyl cyclopentadiene with only 2 mol % catalyst loading; (2)
imide'® to give vinyl lactones as an inconsequential diastereomeric  the one-pot conversion from est2ito ketone3 using nitrosoben-
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Scheme 2. Synthetic Route toward Tetracyclic Compound 9
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59% yield
(86% based on recovered 7)

zene under mild conditions; (3) the one-pot reductive cyanation of

lactone4; (4) the stereoselective intramolecular Michael additton
between theo-branched aldehyde moiety and tfiesubstituted
enone part of bicyclic compourgl
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